
Therefore, the accuracy of calculations according to the selective-gray model depends 
primarily on the accuracy of calculation of radiation in the bands enumerated above. 

NOTATION 

q, density of heat flux, W/m~; r, a, reflectivity and absorptivity, respectively; ~, 
generalized angular coefficient; ~, wavelength, m; C, = 3.74.10 -16 W/m=; C2 = 1.4387-10 -= , 
m.K; ao = 5.67.10 -8, W/(m2.K4); T, temperature, K; (A), matrix of coefficients of the unknowns 
in the system of zonal equations; (Q), (B), column matrices of the unknowns and of the right- 
hand sides of the system of equations; k, absorption coefficient, m-l.atm-~; k~A, total ab- 
sorption coefficient in the band, m-*; e, index of absorption, m-2.atm-~; m, wave number, m -* 
p, pressure, N/m2; indices: p, resultant; c, natural value or eigenvalue; V, volume; F, area. 

LITERATURE CITED 

i. A.S. Nevskii, Radiant Heat Exchange in Furnaces and Combustion Chambers [in Russian], 
Moscow (1971). 

2. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer~ 2nd ed., Hemisphere Publ., 
New York (1981). 

3. A.A. Serokhvostov, Izv. Vyssh. Uchebn. Zaved., Chem. Metall., No. 6, 137-142 (1970). 
4. V.N. Adrianov, Teplofiz. Vys. Temp., 19, No. 5, 1014-1017 (1981). 
5. B.S. Mastryukov, Teplofiz. Vys. Temp., 19, No. i, 154-157 (1981). 
6. V.I. Antonov and L. I. Zdorova, Inzh.-Fiz. Zh., 50, No. i, 98-104 (1986). 
7. E.A. Volkov, Numerical Methods [in Russian], Mosc-ow (1982). 
8. S.S. Penner, Quantitative Molecular Spectroscopy and Radiating Power of Gases [in Rus- 

sian], Moscow (1963). 

DETERMINATION OF THE THERMAL CONDUCTIVITY OF ANISOTROPIC MEDIA 

ON THE BASIS OF THE SCANNING METHOD: THEORETICAL MODELS AND EXPERI}~NTAL 

IMPLEMENTATION OF THE METHOD 

V. V. Berezin, A. A. Kostyurin, 
and Yu. A. Popov 

UDC 536.22.083 

Procedures for determining the thermal conductiity of anisotropic media are devel- 
oped on the basis of an analysis of the temperature fields in anisotropic media 
under the influence of moving energy sources. 

In the mu!tivarlety of procedures based on the scanning method for measuring the thermal 
conductivity of anisotropic media, procedures that utilize the solutions for a point energy 
source and a combination of a line source and a point source are particularly valuable in prac- 
tice. Here we discuss theoretical models of the proposed procedures, making use of the an- ~ 
alytical relations obtained in the first part of the study [i] for the temperature fields of 
moving energy sources in anisotropic media. 

THEORETICAL MODEL OF THE PROCEDURE BASED ON A POINT ENERGY SOURCE 

On the investigated anisotropic sample with two noncoplanar plane surface we choose three 
arbitrary noncolinear directions, which are not in the same plane and are specified by unit 
vectors n~, n2, and n3. The surfaces of the sample are scanned successively along the selected 
directions by a continuously acting point energy source and a temperature sensor, which moves 
along the line of heating at the speed of the source, following it at a distance d (Fig. i). 
The maximum excess temperatures el, e=, and 83 recorded on the heated surfaces of the sample, 
according to Eq. (ii) (in the first part of the study [i]), are equal to 

S. Ordzhonikidze Geological Survey Institute, Moscow. Translated from Inzhenerno-Fi- 
zicheskii Zhurnal, Vol. 54, No. 3, pp. 455-462, March, 1988. Original article submitted 
August 12, 1986. 
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Fig. i. Diagram of the procedure for investigations using a point source. I) Energy 
source; 2) temperature sensor; 3) anisotropic sample; 4) standard; n,, n=, ma are 
the sample scanning directions; 5) lines of heating of the sample and the standard. 

Fig. 2. Diagram of the procedure for investigations of samples when two of the prin- 
cipal thermal conductivites are equal, i) energy source; 2) temperature sensor; 3) 
anisotropic sample; 4) standard; n, and n2 are the sample scanning directions; 5) 
lines of heating of the sample and the standard. 

W / 0~2 , ~1 ~1 ~--1/2 
o , =  , 

03= 2 ~~d (~l~e~'~l) l / 2 ~ ~1 }---~9 "~- ' ) ' 

(2o) 

where e , 6_,  and y m (m = I, 2, 3) are the direction cosines of the respective vectors n,, 
m e Z' n2, and na in the X'Y' coordinate system. The surface of a standard with thermal conductiv- 

ity Est, which is placed in line with the investigated sample, is also scanned by the energy 
source and the temperature sensor during the scanning of the investigated sample (in each of 
the directions n,, n2, and n3). The maximum excess temperature ~ recorded by the sensor on 

, is given by the relation the surface of the standard, according to [2] t 

Ost = W (2~dZs0-h (21) 

If the source power W and tlhe measurement baseline d are constant, the principal thermal 
conductivities ~:. ~2, and ~ of the investigated sample are determined from a system of equa- 
tions derived on the basis of Eqs. (20) and (21): 

0S t ,,2 
/ 1 "I:'2~ 

5,2, ------ {~-st 0st t 2 = ,2, 

2 ~ _ / ~  0st ,~2 

(22) 

according .to the equations 

D1 d e / T  ~ = " ' " D2 det T 

where 

D~D2 1 I/2 ~-3 = [ . , (23) 
' D3 det T / 

3 

D h = ~  T~kA~ ( k =  1, 2, 3), 
i= 1 

(23) 

(24) 
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and Tik is the minor of the element tik in the determinant 

det T ~ det {t,~} = ~z~ [~22 V22 

3 

(25) 

The proposed procedure for determination of the thermal conductivity of anisotropic media 
thus entails: 

scanning of two noncoplanar surfaces of the sample in three noncollinear directions by a 
rigid connected point energy source and a temperature sensor, where each time the surface of 
a standard placed in line with the investigated sample is scanned; 

determination of the orientation of the sample scanning directions relative to the prin- 
cipal heat-conduction axes of the sample; 

calculation of the required unknowns XI, X2, and ~ according to Eqs. (23) and (24). 

Also of practical interest is the case in which two of the three principal thermal con- 
ductivity are equal, i.e., X, = X2 = Xa, Xs = Ac- This happens, e.g., for single crystals of 
minerals of medium symmetry. In order to determine the principal thermal conductivities of 
the medium in this case, it is sufficient to scan one surface, which:forms an angle ~ other 
than 90 ~ with the principal thermal conductivity axis C[IZ' , along two arbitrary noncollinear 
directions n, and n2, which form angles ~ and @= with the C axis (Fig. 2). 

Indeed, it follows from Eq. (22) for Xz = X2 = Xa' X3 = Xc that 

= t "  '< = + 

(26) 

Solving the system of equations (26), we obtain 

~a----( A~sinqh--A~ sin% )1/2, 
COS2 cP2 - -  COSZ (Pl 

A~ cos'- %--  A~ cos~ % 

[(cos 2 % - -  cos 2 cpl)(A~ sin 2 % -  A~ sin z %)]1/2 

(27) 

A necessary condition for the determination of the principal thermal conductivities in 
the implementation of the procedure using a point energy source is the existence of two non- 
coplanar plane surfaces on the investigated samples in the general case. A combination of_a 
linear source and a point source can be used to determine X~, X2, and X3 even if the sample 
has only one plane surface. This affords additional possibilities for nondestructive inves- 
tigations of unconventional objects. 

THEORETICAL STUDY OF THE PROCEDURE BASED ON A C~IBINATION OF A POINT SOURCE AND A 

LINE SOURCE OF ENERGY 

To determine the principal thermal conductivities X,, X2, and k3 of an anisotropic sample 
having one plane boundary source perpendicular to, e.g., the Z' axis (Fig. 3), we scan the 
given surface in two noncollinear directions n, and n2 by a rigidly connected point energy 
source and temperature sensor, which moves along the line of heating at a distance d behind 
the source (Fig. 3a). If the surface of the standard is also scanned in each of the same di- 
rections during heating and recording of the maximum excess temperature 0, and e2 of the sur- 
face of the investigated sample, we obtain the following expressions for the constants W and 
d according to Eqs. (20): 

^ o  A~ = X2X3~ + X1^3~7, A~ = k~X3~ + klX3~- (28) 
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Fig. 3. Diagram of the procedure for investigations based on a 
combination of energy sources, a) Energy source; 2) temperature 
sensor; 3) anisotropic sample; 4) standard; m,, ha, and ns are 
the sample scanning directions. 

We then scan the surfaces of the investigated sample and the stansard in an arbitrary 
direction ms by a rigidly connected line energy source and temperature sensor (Fig. 3b). The 
maximum excess temperatures recorded on the surfaces of the sample and the standard in this 

* respectively) are determined, according to Eq. (19), from the relations case (03 and 8st , 

Oa = q (akacgvd) -L/~,  ( 2 9 )  

Os ~ = q [ a L s  t (cP)~tvd)-t/~. ( 3 0 )  

For constant values of q and d and a known volume specific heat of the investigated sam- 
ple, from Eqs. (28)-(30) we obtain analytical equations for determining the principal thermal 
conductivities: 

_._ A jz - , X.,_ A{ 

. . . .  ! 0 s t ~  o (cp) ,s t  ' ~ _o 

(31) 

An analysis of the above-described theoretical models and the experimental results have 
shown that these procedures generate different random errors of determination of the 9rincipal 
thermal conductivities, depending on the choice of directions in which to scan the samples. It 
is important in this regard to investigate the proposed measurement procedures in order to de- 
termine the optimum sample scanning directions, i.e., the directions in which the best metro- 
logical indices are attained. 

We carry out such investigations for the point-source procedure, which is the most facile 
from the point of view of practical implementation. To simplify the analysis, we consider the 
case in which two of the three principal thermal conductivities are equal, i.e., l~ = %2 = %a, 
%3 = %c (see Fig. 2). The primary source of random error in the determination of the princi- 
pal thermal conductivities of %a and % of the investigated sample are errors of recording of 
the sample and standard temperatures, l.e., essentially the random errors of the experimentally 
determined quantities A~ and A2. Differentiating Eqs. (27) with respect to A~ and A= and as- 
suming that the relative random errors of determination of Az and A2 are equal (i.e., 8Az = 
6Aa = ~A), we obtain expressions for the relative random errors ~%a and ~A c of determination 
of the principal thermal conductivities: 

6~a = (A2-'~ - B ~ ) ' / 2 6 A ,  6~c = (CZ4 - Dz) l /26A,  ( 3 2 )  

where 

A = 

B = 

s i n  z % [(~,o/La) s i n  = % q -  co s  z %1 

c o s  2 % s i n  2 % - -  c o s  ~ % sin~ % 

s i n  2 % [@,c/'~,a) s in  z % -~- co s  z % ]  

cos  2 % s i n  z % ---  co s  z % s i n  z % 
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C = [sil~z % -5  (Z.JE~) cos ~ %l[(;~Jk~) s in z % - ? 2  cos ~ %1 

cos 2 % s in  z % - -  cos ~ % sin 2 % 

D = lsine % -b- (s cos z %1 [(kc/~'a) s in  z % -5 2 cos z %]  

cos 2 % s in  2 % - -  cos 2 % s in  z % 

Analyzing Eqs. (32) and (33), we readily show that for r > ~a the quantities 6% a and 6% 
c 

are nonnegative decreasing functions of the angle ~,. It is evident from Fig. 2 that the an- 
gles formed by all possible scanning lines on the surface of the sample with its C axis fall 
within the interval from @ to 90 ~ , so that for any fixed value of @2 the quantities 61 a and 
61 c acquire the minimum values at @I = 90 ~ i.e., when the scanning direction on the sample 
surface mx is perpendicular to the C axis. Substituting ~x = 90 ~ in relation (33), we obtain 

A = D = 1 -5 (~c/X;~) tg  2 % ,  B = (~c/~a) tg  2 % ,  C = 2 -5 ( ~ I ~ D  tg  2 % .  ( 3 4 )  

It follows from Eqs. (34) that the quantities 6X a and 81 are nonnegative increasing 
functions of the angle ~2 for ~i = 90 ~ Consequently, 61_ an~ 61 G assume minimum values for 
the minimum possible value of the angle ~2, which is equa~ to @ in the given situation (Fig. 
2). 

Thus, to minimize the random errors of determination of the principal thermal conductiv- 
ities of anisotropic media, it is necessary to scan the surface of the sample in the two op- 
timum directions! One direction must be perpendicular to the principal C axis of heat conduc- 
tion, and the second must coincide with the projection of this axis onto the heated surface 
of the investigated sample. 

It follows from Eqs. (33) and (34) that the best metrological indices of the procedure 
for determining the thermal conductivity of anisotropic media on the basis of a point energy 
source are attained when ~, = 90 ~ and @2 = 0, i.e., when one of the scanning directions is 
perpendicular to the C axis and the other coincides with it. The analytical relations for de- 
termining the principal thermal conductivitiesacquire thesimplest form in this case: 

where, according to Eqs. (32) and (34), the quantity ~% does not exceed the random error of 
determination of the thermal conductivity of isotropic ~edia [3], and 6~ c = /561 a. 

Generalizing the results, we can show that the optimum sample scanning directions in the 
investigation of anisotropic media with principal thermal conduc~ivities ~ ~ 12 # ~3 coin- 
cide with the principal heat-conduction axes of the investigated media. According to Eqs. 
(22) and (23), the quantities X~, X2, and I~ in this case are determined from the equations 

%1=: A.:Aa , 1 2 - -  _ _ A 1 A a  , ~ 3 - -  A1A2 , (36) 
A 1 A~ A3 

where the random errors of determination of X~, Xa, and 13 are r times the random error of 
measurement of the thermal conductivity of isotropic media. 

The practical implementation of the proposed method entails the application of noncontact- 
ing devices for heating the samples and recording their temperatures. The experimental ar- 
rangement for determining the thermal conductivity of anisotropic materials [3] includes an 
optical point source of thermal energy, a noncontacting temperature sensor responsive to 
thermal radiation from the heated surfaces of the samples, and an electromechanical system 
with a movable platform, on which the investigated samples and the standard are placed during 
the heating and measurement process. The energy source in this arrangement is a continuous- 
wave laser with a radiation wavelength of 10.6 ~m and a power of 3-5 W in the beam spot. A 
radiometer with a bandwidth of 2 to 20 ~m is used for the noncontacting temperature measure- 
ments. 

The apparatus is standardized by means of standrad thermal conductivity samples (optical 
glasses KV, K8, LK5, titanium alloy VT-6, stainless steel 12KhI8NIOT) and certified samples 
of white marble. The standards have been certified at the All-Union Scientific-Research In- 
stitute of Metrology. The total error of the thermal conductivity of the standards according 
to the certification results is not greater than 2.5%. 
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TABLE i. Thermal Conductivity of Single Crystals (T = 300 K) 

- (WIm.K) 
Mineral, site Symmetry ~c La ! ~b ha/~,c 

(W/m.K] (W/m'K) 

Pyrrhotite, unnamed site, Yakutia 
Ruffle, Ge0rgia, USA 
Quartz (rock crystal), Yakutia 
Quartz (morion), Zabaikale 
Quartz (false topaz) 
Ouar tz (synthetfc) 
Vesuvian, Tuva ASSR 
Vesuvian, Vilyui River, Y akutia 
Vesuvian0 Vilyui River, Yakutia 
Beryl, Eastern Siberia 

Beryl, Eastern Siberia 
Tgurmaline (schorlite), Bavaria 
Tourmaline (scliorlite), Greenland 
Muscovite, Ilmen Mrs., Urals 
Biotite, Vishnev Mrs., Urals 
Chlorite (peninite), Nazem Mrs., 

Urals 
Scapolite, Slyudyanka site, Zabaikal 
Calcite (Iceland spar), Nizbnei 

Tun~uski re~ion 
Apatife, Slyudyanka site, Zabaikale 
Apatite, Slyudyanka site, Zabaikale 
Apatite, Slyudyanka site, Zabaikale 

Hexagonal 
Tetragonal 
Trigonal 

>) 

)> 

Tetragonal 
>> 

Hexagonal 

Monoclinic 

Monoclinic 

Tetragonal 
Trigonal 

Hexagonal 

3,71 
5,92 

10,8 
10,8 
10,8 
10,8 
2,54 
2,30 
2,18 
4,44 

4,17 
2,77 
3,61 
1,03 
1,30 
1,38 

1,59 
3,50 

1,63 
1,72 
1,76 

1,43 
,,38 
;,I0 
LIO 
;,10 
i,lO 
! ,43 
:,07 
!, 02 
,75 

,88 
t,08 
,64 

3,80 
2,61 
1,1 

1,34 
3,21 

1,51 
1,47 
1,60 

3,43 
i,38 
3,10 
3,10 
~,10 
5,10 
2,43 
2,07 
2,02 
3,75 

3,88 
4,08 
4,64 
3,80 
2,61 
1,I 

1,34 
3,21 

1,51 
1,47 
1,6C 

0192 
0,74 
0,56 
0,56 
0,56 
0,56 
0,96 
0,90 
0,93 
0,84 

0,93 
1,47 
1,29 
3,69 
2,01 
8,0 

0,84 
0,92 

0,93 
0,85 
0,91 

The apparatus developed here can be used to determine the principal thermal conductivi- 
ties of anisotropic materials in the range of 1-15 W/m K within 7% error limits, The system- 
atic error component associated with the error of the values for the standards is not greater 
than 2.5%, and the random component is • with confidence coefficient 0.95, The high speed 
of the measurement process (15-20 samples per hour) makes it possible to decrease the random 
error component significantly as a result of repeated measurements. 

We have used the proposed method to determine the principal thermal conductivities of 21 
single crystals of 12 different materials among those for which reliable data on the aniso- 
tropy of the thermal conductivity have not been published in the literature. For the investi- 
gations we chose crystals with symanetries characterized by equal values of two of the princi- 
pal thermal conductivities (i.e., ~, = ~2 = Xa, 13 = Xc ). This enabled us to determine the 
principal thermal conducti~ities from one face of the crystal, using the simplest procedure 
for technical implementation with a point energy source. The results of the investigations 
are summarized in Table i. Because of averaging of the data from the repeated measurements, 
the error of the tabulated values of ~ does not exceed 3%, and the error of ~ does not ex- 
ceed 5%. a c 

Thus, the foregoing results reinforce future prospects for the application of the scan- 
ning method for nondestructive investigations of the thermal conductivity of anisotropic ma- 
terials. 

NOTATION 

e, maximum excess temperature; 11, 12, 13, h a, %c, principal thermal conductivities of 
anisotropic medium; n,, m2, ma, unit vectors in the sample scanning directions; ~, B, y, 
direction cosines of vector m in coordinates X'Y'Z', whose axes coincide with the principal 
heat-conduction axes of the medium; W, power of energy source; q, power density of source; d, 
distance from energy source to temperature sensor; Tik , minor of matrix; cp, volume specific 
heat; v, speed of moving energy source. 
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